某一汽车装配操作线完成时间的计划均值为2.2分钟。由于完成时间既受上一道装配操作...
某一汽车装配操作线完成时间的计划均值为2.2分钟。由于完成时间既受上一道装配操作线的影响,又影响到下一道装配操作线的生产,所以保持2.2分钟的标准是很重要的。一个随机样本由45项组成,其完成时间的样本均值为2.39分钟,样本标准差为0.20分钟。在0.05的显著性水平下检验操作线是否达到了2.2分钟的标准。
2、某商店为解决居民对某种商品的需要,调查了100户住户,得出每月每户平均需要量为10千克,样本方差为9。若这个商店供应10000户,求最少需要准备多少这种商品,才能以95%的概率满足需要?
二、简答题(每小题25分,共50分)
1. 解释相关关系的含义,说明相关关系的特点。
2. 为什么对总体均值进行估计时,样本容量越大,估计越精确?
第五组:
一、 计算题(每小题25分,共50分)
1、根据下表中Y与X两个变量的样本数据,建立Y与X的一元线性回归方程。
Y X 5 10 15 20
120 0 0 8 10 18
140 3 4 3 0 10
fx 3 4 11 10 28
2、某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,检验结果如下:
每包重量(克) 包数(包)f x xf x-
(x- )2f
148―149 10 148.5 1485 -1.8 32.4
149―150 20 149.5 2990 -0.8 12.8
150―151 50 150.5 7525 0.2 2.0
151―152 20 151.5 3030 1.2 28.8
合计 100 -- 15030 -- 76.0
要求:(1)计算该样本每包重量的均值和标准差;
(2)以99%的概率估计该批茶叶平均每包重量的置信区间(t0.005(99)≈2.626);
(3)在 =0.01的显著性水平上检验该制造商的说法是否可信(t0.01(99)≈2.364)(4)以95%的概率对这批包装茶叶达到包重150克的比例作出区间估计(Z0.025=1.96);
(写出公式、计算过程,标准差及置信上、下保留3位小数)
二、简答题(每小题25分,共50分)
2、某商店为解决居民对某种商品的需要,调查了100户住户,得出每月每户平均需要量为10千克,样本方差为9。若这个商店供应10000户,求最少需要准备多少这种商品,才能以95%的概率满足需要?
二、简答题(每小题25分,共50分)
1. 解释相关关系的含义,说明相关关系的特点。
2. 为什么对总体均值进行估计时,样本容量越大,估计越精确?
第五组:
一、 计算题(每小题25分,共50分)
1、根据下表中Y与X两个变量的样本数据,建立Y与X的一元线性回归方程。
Y X 5 10 15 20
120 0 0 8 10 18
140 3 4 3 0 10
fx 3 4 11 10 28
2、某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,检验结果如下:
每包重量(克) 包数(包)f x xf x-
(x- )2f
148―149 10 148.5 1485 -1.8 32.4
149―150 20 149.5 2990 -0.8 12.8
150―151 50 150.5 7525 0.2 2.0
151―152 20 151.5 3030 1.2 28.8
合计 100 -- 15030 -- 76.0
要求:(1)计算该样本每包重量的均值和标准差;
(2)以99%的概率估计该批茶叶平均每包重量的置信区间(t0.005(99)≈2.626);
(3)在 =0.01的显著性水平上检验该制造商的说法是否可信(t0.01(99)≈2.364)(4)以95%的概率对这批包装茶叶达到包重150克的比例作出区间估计(Z0.025=1.96);
(写出公式、计算过程,标准差及置信上、下保留3位小数)
二、简答题(每小题25分,共50分)
版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!