12秋北京交通大学《概率论与数理统计》在线作业二

所属学校:北京交通大学 科目:概率论与数理统计 2015-03-11 13:26:06
北交《概率论与数理统计》在线作业二
试卷总分:100
单选题
判断题
一、单选题(共 30 道试题,共 75 分。)
V
1. 点估计( )给出参数值的误差大小和范围
A. 能
B. 不能
C. 不一定
D. 以上都不对

2. 设随机变量X服从泊松分布,且P{X=1}=P{X=2},则E(X)=( )
A. 2
B. 1
C. 1.5
D. 4

3. 一部10卷文集,将其按任意顺序排放在书架上,试求其恰好按先后顺序排放的概率( ).
A. 2/10!
B. 1/10!
C. 4/10!
D. 2/9!

4. 有两批零件,其合格率分别为0.9和0.8,在每批零件中随机抽取一件,则至少有一件是合格品的概率为
A. 0.89
B. 0.98
C. 0.86
D. 0.68

5. 相继掷硬币两次,则事件A={两次出现同一面}应该是
A. Ω={(正面,反面),(正面,正面)}
B. Ω={(正面,反面),(反面,正面)}
C. {(反面,反面),(正面,正面)}
D. {(反面,正面),(正面,正面)}

6. 在条件相同的一系列重复观察中,会时而出现时而不出现,呈现出不确定性,并且在每次观察之前不能确定预料其是否出现,这类现象我们称之为
A. 确定现象
B. 随机现象
C. 自然现象
D. 认为现象

7. 事件A与B互为对立事件,则P(A+B)=
A. 0
B. 2
C. 0.5
D. 1
此题选: D
8. 一种零件的加工由两道工序组成,第一道工序的废品率为p,第二刀工序的废品率为q,则该零件加工的成品率为( )
A. 1-p-q
B. 1-pq
C. 1-p-q+pq
D. (1-p)+(1-q)

9. 如果两个事件A、B独立,则
A. P(AB)=P(B)P(AB)
B. P(AB)=P(B)P(A)
C. P(AB)=P(B)P(A)+P(A)
D. P(AB)=P(B)P(A)+P(B)

10. 已知随机事件A 的概率为P(A)=0.5,随机事件B的概率P(B)=0.6,且P(BA)=0.8,则和事件A+B的概率P(A+B)=( )
A. 0.7
B. 0.2
C. 0.5
D. 0.6

11. 设X与Y是相互独立的两个随机变量,X的分布律为:X=0时,P=0.4;X=1时,P=0.6。Y的分布律为:Y=0时,P=0.4,Y=1时,P=0.6。则必有( )
A. X=Y
B. P{X=Y}=0.52
C. P{X=Y}=1
D. P{X#Y}=0

12. 设两个随机变量X与Y相互独立且同分布;P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是()。
A. P{X=Y}=1/2
B. P{X=Y}=1
C. P{X+Y=0}=1/4
D. P{XY=1}=1/4

13. 对于任意两个随机变量X和Y,若E(XY)=EX*EY,则()。
A. D(XY)=DX*DY
B. D(X+Y)=DX+DY
C. X和Y相互独立
D. X和Y互不相容

14. 假设一厂家一条自动生产线上生产的每台仪器以概率0.8可以出厂,以概率0.2需进一步调试,经调试后,以概率0.75可以出厂,以概率0.25定为不合格品而不能出厂。现该厂新生产了十台仪器(假设各台仪器的生产过程相互独立),则十台仪器中能够出厂的仪器期望值为( )
A. 9.5
B. 6
C. 7
D. 8

15. 事件A={a,b,c},事件B={a,b},则事件A+B为
A. {a}
B. {b}
C. {a,b,c}
D. {a,b}

16. 事件A与B相互独立的充要条件为
A. A+B=Ω
B. P(AB)=P(A)P(B)
C. AB=Ф
D. P(A+B)=P(A)+P(B)

17. 下列哪个符号是表示必然事件(全集)的
A. θ
B. δ
C. Ф
D. Ω
此题选: D
18. 环境保护条例规定,在排放的工业废水中,某有害物质含量不得超过0.5‰ 现取5份水样,测定该有害物质含量,得如下数据:0.53‰,0.542‰, 0.510‰ , 0.495‰ , 0.515‰则抽样检验结果( )认为说明含量超过了规定。
A. 能
B. 不能
C. 不一定
D. 以上都不对

19. 200个新生儿中,男孩数在80到120之间的概率为(  ),假定生男生女的机会相同
A. 0.9954
B. 0.7415
C. 0.6847
D. 0.4587

20. 设A,B,C是两两独立且不能同时发生的随机事件,且P(A)=P(B)=P(C)=x,则x的最大值为()。
A. 1/2
B. 1
C. 1/3
D. 1/4

21. 两个互不相容事件A与B之和的概率为
A. P(A)+P(B)
B. P(A)+P(B)-P(AB)
C. P(A)-P(B)
D. P(A)+P(B)+P(AB)

22. 在区间(2,8)上服从均匀分布的随机变量的数学期望为( )
A. 5
B. 6
C. 7
D. 8

23. 设随机变量X服从正态分布,其数学期望为10,X在区间(10,20)发生的概率等于0.3。则X在区间(0,10)的概率为( )
A. 0.3
B. 0.4
C. 0.5
D. 0.6

24. 设随机变量的数学期望E(ξ)=μ,均方差为σ,则由切比雪夫不等式,有{P( ξ-μ ≥3σ)}≤( )
A. 1/9
B. 1/8
C. 8/9
D. 7/8

25. 设服从正态分布的随机变量X的数学期望和均方差分别为10和2,则变量X落在区间(12,14)的概率为( )
A. 0.1359
B. 0.2147
C. 0.3481
D. 0.2647

26. 投掷n枚骰子,则出现的点数之和的数学期望是
A. 5n/2
B. 3n/2
C. 2n
D. 7n/2
此题选: D
27. 设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然( )
A. 不独立
B. 独立
C. 相关系数不为零
D. 相关系数为零
此题选: D
28. 设随机变量X~B(n,p),已知EX=0.5,DX=0.45,则n,p的值是()。
A. n=5,p=0.3
B. n=10,p=0.05
C. n=1,p=0.5
D. n=5,p=0.1
此题选: D
29. 参数估计分为(   )和区间估计
A. 矩法估计
B. 似然估计
C. 点估计
D. 总体估计

30. 设随机变量X和Y独立,如果D(X)=4,D(Y)=5,则离散型随机变量Z=2X+3Y的方差是(  )
A. 61
B. 43
C. 33
D. 51

北交《概率论与数理统计》在线作业二
试卷总分:100
单选题
判断题
二、判断题(共 10 道试题,共 25 分。)
V
1. 二元正态分布的边缘概率密度是一元正态分布。
A. 错误
B. 正确

2. 在掷硬币的试验中每次正反面出现的概率是相同的,如果第一次出现是反面那么下次一定是正面
A. 错误
B. 正确

3. 袋中有白球b只,黑球a只,以放回的方式第k次摸到黑球的概率与第一次摸到黑球的概率不相同
A. 错误
B. 正确

4. 在某一次随机试验中,如掷硬币试验,概率空间的选择是唯一的
A. 错误
B. 正确

5. 样本平均数是总体期望值的有效估计量。
A. 错误
B. 正确

6. 事件A与事件B互不相容,是指A与B不能同时发生,但A与B可以同时不发生
A. 错误
B. 正确

7. 样本均值是泊松分布参数的最大似然估计。
A. 错误
B. 正确

8. 在某多次次随机试验中,某次实验如掷硬币试验,结果一定是不确定的
A. 错误
B. 正确

9. 有一均匀正八面体,其第1,2,3,4面染上红色,第1,2,3,5面染上白色,第1,6,7,8面染上黑色。现抛掷一次正八面体,以A,B,C分别表示出现红,白,黑的事件,则A,B,C是两两独立的。
A. 错误
B. 正确

10. 若两个随机变量的联合分布是二元正态分布,如果他们的相关系数为0则他们是相互独立的。
A. 错误
B. 正确
版权声明

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系本站我们将配合处理!

分享: